Chat with us, powered by LiveChat Create jupyter notebook file: Intro_NN_XORGATE.ipynb ****Exercise**** # Uncomment the xor_gate line | EssayAbode

Create jupyter notebook file: Intro_NN_XORGATE.ipynb ****Exercise**** # Uncomment the xor_gate line

Create jupyter notebook file: Intro_NN_XORGATE.ipynb

The XOR Gate Of all logic gates the most important in computer science is the exclusive or or XOR gate. It turns out there is

****Exercise****

# Uncomment the xor_gate line and find out which neurons besides the or_gate neuron the
# network should have in its hidden and output layer to produce the right values.

in[]class Network():
def __init__(self, gate1, gate2, out_gate):
self.hidden_neuron1 = gate1
self.hidden_neuron2 = gate2
self.out_neuron = out_gate
def activate(self, x1, x2):
z1 = self.hidden_neuron1.activate(x1, x2)
z2 = self.hidden_neuron2.activate(x1, x2)
return self.out_neuron.activate(z1, z2)
#xor_gate = Network(…, …, and_gate)
make_truth_table(xor_gate)

****Exercise****

# Finish this version of an XOR gate that more closely resembles a neural network by determining the shapes the #weights and biases need to have.

#W1 = np.array(…)
#b1 = np.array(…)

#W2 = np.array(…)
#b2 = np.array(…)

in[?]hidden_layer = Layer(W1, b1)
output_layer = Layer(W2, b2)

in[]class Network():
def __init__(self, hidden, output):
self.hidden = hidden
self.output = output
def activate(self, X):
z = self.hidden.activate(X)
return self.output.activate(z)

xor_gate = Network(hidden_layer, output_layer)

xor_output = xor_gate.activate(X)
np.round(xor_output)

Related Tags

Academic APA Assignment Business Capstone College Conclusion Course Day Discussion Double Spaced Essay English Finance General Graduate History Information Justify Literature Management Market Masters Math Minimum MLA Nursing Organizational Outline Pages Paper Presentation Questions Questionnaire Reference Response Response School Subject Slides Sources Student Support Times New Roman Title Topics Word Write Writing